Transient Inhibition of Histone Deacetylation Alters the Structural and Functional Imprint at Fission Yeast Centromeres
نویسندگان
چکیده
Histone acetylation may act to mark and maintain transcriptionally active or inactive chromosomal domains through the cell cycle and in different lineages. A novel role for histone acetylation in centromere regulation has been identified. Exposure of fission yeast cells to TSA, a specific inhibitor of histone deacetylase, interferes with repression of marker genes in centromeric heterochromatin, causes chromosome loss, and disrupts the localization of Swi6p, a component of centromeric heterochromatin. Transient TSA treatment induces a heritable hyperacetylated state in centromeric chromatin that is propagated in lineages in the absence of drug. This state is linked in cis to the treated centromere locus and correlates with inheritance of functionally defective centromeres and persistent chromosome segregation problems. Thus, assembly of fully functional centromeres is partly imprinted in the underacetylated or transcriptionally silent state of centromeric chromatin.
منابع مشابه
Histone deacetylase homologs regulate epigenetic inheritance of transcriptional silencing and chromosome segregation in fission yeast.
Position-effect control at the silent mat2-mat3 interval and at centromeres and telomeres in fission yeast is suggested to be mediated through the assembly of heterochromatin-like structures. Therefore, trans-acting genes that affect silencing may encode either chromatin proteins, factors that modify them, or factors that affect chromatin assembly. Here, we report the identification of an essen...
متن کاملSir2 is required for Clr4 to initiate centromeric heterochromatin assembly in fission yeast
Heterochromatin assembly in fission yeast depends on the Clr4 histone methyltransferase, which targets H3K9. We show that the histone deacetylase Sir2 is required for Clr4 activity at telomeres, but acts redundantly with Clr3 histone deacetylase to maintain centromeric heterochromatin. However, Sir2 is critical for Clr4 function during de novo centromeric heterochromatin assembly. We identified...
متن کاملA New Role for the Transcriptional Corepressor SIN3; Regulation of Centromeres
Centromeres play a vital role in maintaining the genomic stability of eukaryotes by coordinating the equal distribution of chromosomes to daughter cells during mitosis and meiosis. Fission yeast (S. pombe) centromeres consist of a 4-9 kb central core region and 30-100 kb of flanking inner (imr/B) and outer (otr/K) repeats. These sequences direct a laminar kinetochore structure similar to that o...
متن کاملFission yeast CENP-B homologs nucleate centromeric heterochromatin by promoting heterochromatin-specific histone tail modifications.
Heterochromatin is a functionally important chromosomal component, especially at centromeres. In fission yeast, conserved heterochromatin-specific modifications of the histone H3 tail, involving deacetylation of Lys 9 and Lys 14 and subsequent methylation of Lys 9, promote the recruitment of a heterochromatin protein, Swi6, a homolog of the Drosophila heterochromatin protein 1. However, the pri...
متن کاملcis-Acting DNA from Fission Yeast Centromeres Mediates Histone H3 Methylation and Recruitment of Silencing Factors and Cohesin to an Ectopic Site
BACKGROUND Metazoan centromeres are generally composed of large repetitive DNA structures packaged in heterochromatin. Similarly, fission yeast centromeres contain large inverted repeats and two distinct silenced domains that are both required for centromere function. The central domain is flanked by outer repetitive elements coated in histone H3 methylated on lysine 9 and bound by conserved he...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell
دوره 91 شماره
صفحات -
تاریخ انتشار 1997